Serological Changes Induced by Blend of Sunset Yellow, Metanil Yellow and Tartrazine in Swiss Albino Rat, Rattus Norvegicus

Beenam Saxena and Shiv Sharma

Department of Zoology, Bareilly College, Bareilly, Uttar Pradesh, India

Address for correspondence: Dr. Beenam Saxena, Pest and Parasite Research Lab II, Department of Zoology, Bareilly College, Bareilly, Uttar Pradesh, India. E-mail: beenam_1973@yahoo.co.in

Copyright: © Toxicology International

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objective:

The present study was carried out to evaluate the toxic effect of blend of some food colors on Swiss albino rats.

Materials and Methods:

A blend (1:1:1) of sunset yellow, metanil yellow and tartrazine showed additive effects on serological parameters which indicate that addition of these dye together in food stuff may give rise to more toxic effects than are produced by each dye individually. Animals were divided into four groups (I, II, III, and IV). First group was treated as control and respective group of animals received 25, 50 and 75 mg/kg body weight blend of food colors by gavaging up to 30 days.

Results:

The serological study showed a decrease in total protein and albumin and an increase in alkaline phosphatase, SGPT and total bilirubin. The results revealed that oral administration of these blend did not affect the body weight gain.

Conclusion:

The prolonged consumption of the blend may cause adverse effect on human health.

Keywords: Metanil yellow, sunset yellow, Swiss rat and blend, tartrazine

INTRODUCTION

The human beings have been using color additive for a very long time to hide poor quality of spoiled food products and to provide attractive appearance to them. Many natural and synthetic food colors are used to enhance the appearance of food products, however 95% of those used today are synthetic because they are produced easily, cheaper and provide better coloration. According to food adulteration act (FDA) eight food colors in India are permitted to be used in the eatables in a limited quantity.[1] Out of which tartrazine and sunset yellow are the most widely used food colorant in cold drinks, sweets, bakery, ice
creams, snack food, cereals, packaged soup etc. Metanil yellow is a non-permitted synthetic food color and being used extensively for coating turmeric and arhar dal. As the survey in urban and rural areas of Bareilly region had been done regarding the food habits among individual to know the extent of consumption of these synthetic color during normal meal, so the present study is planned to evaluate the toxicity of blend of these food colors on Swiss albino rat.

MATERIALS AND METHODS

Experimental animal

Adult Swiss albino rats, 8-9 week old, weighing 90 ± 5 g were used for the present study. They were maintained under standard laboratory conditions. Animals were housed in the polypropylene cages and maintained under standard conditions i.e. 12 h light and dark cycle, 25 ± 3°C temperature, 40-60 relative humidity and were fed on low protein diet procured from Ashirwad food Ltd, Chandigarh, India. The water was given ad libitum to experimental animals.

Chemical used

All the chemicals, sunset yellow (C. I. 15985), tartrazine (C. I. 19140) and metanil yellow (C. I. 13065) were purchased from Otto Chemical Company Pvt. Ltd. Mumbai (India) for experiments. The blend was formed by mixing them in equal ratio and orally administered to experimental animals.

Experimental design

Animals were divided into four groups having six animals in each group. The animal of I group was treated as control and received only low protein diet during experiment. The animals of II, III and IV groups were fed on low protein diet mixed with 25, 50 and 75 mg/kg body weight/day dose of blend for 30 days. These groups served as experimental groups.

Parameter studied

Body weight The percentage of body weight gain was calculated as follows.

\[
\frac{\text{Mean final weight} - \text{mean initial weight}}{\text{Mean initial weight}} \times 100
\]

Serum analysis

By decapitation of each animal, blood was collected in clean centrifuged tube placed at 4°C for 2-3 h and then centrifuged at 3000 rpm for 15 minutes and serum was separated and kept at −20°C till serological analysis was done.

Serum alkaline phosphatase was determined by the method of Kind and King.\(^2\) Serum total bilirubin was measured by the method of Doumas \& al.\(^3\) Serum total protein was determined according to the method given by Lowry \& al.\(^4\)

RESULTS

Sub-chronic toxicity studies were conducted on Swiss albino rat. Feeding on the blend of food color at different doses i.e. 25, 50 and 75 mg/kg body weight for 30 days did not show mortality of rats.

Body weight

The mean body weight in control and experimental group is shown in Table 1. The blend of above-mentioned food colors caused an increase in the body weight with the different doses (Group II, III and
IV). In group II, the animal gained more body weight i.e. 13.64% in comparison with the animal of groups III (11.32%) and IV (10.78%). In the control group, the percent gain in body weight was 14.01%.

Serological examination

Serological results after the treatment period revealed significant changes in the experimental group when compared with the control group. The total protein and albumin were decreased in all experimental groups (II, III and IV) when compared to control [Figures 1 and 2, Table 2].

The level of alkaline phosphatase was significantly increased in all experimental groups i.e. 160.2, 182, 201 U/L with respective doses when compared with control, i.e. 150.5 U/L [Figure 3].

The levels of total bilirubin and SGPT were increased significantly in the treated group with 50 and 75 mg/kg body weight when compared to control. The blend caused a decrease in serum bilirubin at low dose (Group II) while no change in SGPT at the same dose (Group II) in comparison to control [Figures 4 and 5].

DISCUSSION

The present study showed that dose feeding animals showed an increase in body weight. A similar finding was also reported by Gautam et al.[5] He studied the toxic impact of tartrazine on Swiss albino mice and also found an increase in body weight in both experimental groups i.e. for low dose (0.2 g/kg body weight) and high dose (0.4 g/kg body weight) groups. Hasan[6] also showed weight gain in experimental animals treated with 7.5 mg/kg body weight tartrazine and 0.15 and 0.3 mg/kg chocolate brown. Chatterjee and Shinde[7] also reported an increase in the body weight over 20% above the mean body weight. Similar results have also been reported by Osman et al.[8] in mice fed with synthetic food colorant. Sharma et al.[9] in mice fed with orange red; Sharma et al.[10] in mice fed with apple green and Chakravarty et al.[11] in mice fed with lead chromate.

However, Sharma et al.[1] studied the hemotoxic effect of chocolate brown on Swiss albino mice and observed no significant change in body weight of experimental mice when compared with control. On the contrary, Sharma et al.[12] showed a highly significant decrease in the body weight of experimental animal when fed with tartrazine; Abdel-Aziz et al.[13] in rat fed with some synthetic food colorant; Helal et al.[14] in rat fed with some synthetic and natural food colorant.

The present study revealed a significant increase in alkaline phosphatase in rats which consumed different doses of blend of food color. These results are in accordance with Singh[15] Helal[16] Mahmoud[17] Sharma et al.[1] and Sharma et al.[18] Singh[15] also showed an increase in alkaline phosphatase in rats fed with metanil yellow and maintained on low protein diet. Helal[16] studied the effect of oral administration of the mixture of sodium nitrate and sunset yellow given daily for 30 days to albino rat and observed a significant increase in alkaline phosphatase. Sharma et al.[1] observed the effect of feeding different dose of blend (Chocolate brown) on experimental mice and serological studies revealed an increase in the alkaline phosphatase. Mahmoud[17] observed an increase in alkaline phosphatase in rat fed with synthetic dye brilliant blue. Sharma et al.[18] observed an increase in alkaline phosphatase in female Swiss albino mice fed with kesari powder (a blend of tartrazine and sunset yellow).

In the present study, a decrease in total protein and albumin was reported [Figures 1 and 2]. Similar result has also been reported by Sharma et al.[18] in Swiss albino mice fed with kesari powder. He reported a significant decrease in total serum protein at both dose levels of kesari powder. The present observations are also in accordance with Ashour and Abdel-aziz[19] and Chakravarty et al.[20] Latha and Jeevaratnam[21] observed a 13-week oral toxicity study of carotenoid pigment in rat and reported a slight decrease in total protein and albumin in treated groups in comparison to the control group. On the contrary,
Sharma et al. [12] reported a significant increase in serum protein at low dose but the increase was found to be non-significant at high dose in Swiss albino mice fed with tartrazine. Sharma et al. [1] also reported an increase in serum protein in Swiss albino mice fed with chocolate brown. Himri et al. [22] studied the 90 day oral toxicity study of tartrazine and evaluated that the total protein significantly increases in a group treated with 7.5 and 10 mg/kg body weight but decreases in a group treated with 5 mg/kg body weight.

The present study showed a slight increase in total bilirubin and SGPT. Latha and Jeevaratnm [21] also observed a slight increase in SGPT in treated male and female rats in comparison to the control group. Mahmoud [17] also reported a significant increase in total bilirubin in rats after the administration of brilliant blue supplemented diet.

CONCLUSION

The present subchronic study of blend of food color indicates serological changes in experimental animal and the prolonged consumption of the blend may cause adverse effect on human health.

Footnotes

Source of Support: Nil.

Conflict of Interest: None declared.

REFERENCES

12. Sharma G, Gautam D, Goyal RP. Tartrazine induced haematological and serological changes in female

Figures and Tables
Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Body weight (grams) (mean±S.E.M.)</th>
<th>% Gain in body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>I</td>
<td>92±0.46</td>
<td>107±0.37</td>
</tr>
<tr>
<td>II</td>
<td>95±0.32</td>
<td>110±0.55</td>
</tr>
<tr>
<td>III</td>
<td>94±0.46</td>
<td>106±0.41</td>
</tr>
<tr>
<td>IV</td>
<td>91±0.42</td>
<td>102±0.53</td>
</tr>
</tbody>
</table>

S.E.M. = Standard error of mean

Changes in body weight of albino rats fed with blend of sunset yellow, metanil yellow and tartrazine
Figure 1

Effect of blend of food color on total protein

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989917/?report=printer
Figure 2

Effect of blend of food color on albumin
Serological Changes Induced by Blend of Sunset Yellow, Metanil Ye... http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989917/?report=print
d
Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose</th>
<th>Protein U/L</th>
<th>Albumin U/L</th>
<th>Alkaline phosphatase U/L</th>
<th>T-Lat. Trehalose mg %</th>
<th>SGPT U/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Distilled water</td>
<td>10.6±0.15</td>
<td>4.0±0.12</td>
<td>150±1.26</td>
<td>6.9±0.27</td>
<td>21±1.1</td>
</tr>
<tr>
<td>II</td>
<td>25 mg/kg body weight</td>
<td>8.7±0.27***</td>
<td>3.0±0.17</td>
<td>100±0.97</td>
<td>6.7±0.38</td>
<td>21±0.8</td>
</tr>
<tr>
<td>III</td>
<td>50 mg/kg body weight</td>
<td>7.9±0.22****</td>
<td>3.8±0.52</td>
<td>131±0.77</td>
<td>6.9±0.32</td>
<td>27±0.72</td>
</tr>
<tr>
<td>IV</td>
<td><5 mg/kg body weight</td>
<td>7.5±0.19***</td>
<td>4.3±0.27</td>
<td>93±0.62***</td>
<td>10±0.47</td>
<td>42±0.8***</td>
</tr>
</tbody>
</table>

Values represent the mean±SEM. *P<0.05 significantly different from control, **P<0.05 very significantly different from control, ****P<0.05 extremely significantly different from control, SGPT – Serum glutathione peroxidase transaminase

Serological changes in albino rats fed with blend of sunset yellow, metanil yellow and tartrazine
Effect of blend of food color on alkaline phosphatase

Figure 3
Figure 4

Effect of blend of food color on total bilirubin
Figure 5

Effect of blend of food color on SGPT

Articles from Toxicology International are provided here courtesy of Medknow Publications